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Abstract

Support Vector Regression (SVR) is a machine learning technique designed to
predict continuous values by extending the principles of Support Vector
Machines (SVM) into regression tasks. The performance of SVR models can be
constrained by the selection of hyperparameters, which significantly affect the
model’s predictive accuracy. To overcome this challenge, Genetic Algorithms
(GA) can be utilized to optimize the hyperparameters of the SVR model. The GA
demonstrated a steady improvement in fitness over 100 iterations. In this study,
researchers focus on optimizing SVR for improved predictive accuracy in
analysing cross-sectional data related to COVID-19 pandemic in Sulaymaniyah
governorate. By leveraging GA for hyperparameter tuning, our research aims to
evaluate the performance of a SVR with GA combined for optimizing complex,
non-linear relationships in cross-sectional data, and improve the accuracy of the
SVR model through GA. While previous research has explored optimizing similar

models, to the best of the researchers' knowledge, this is the first study to apply
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such an optimized model to this specific dataset in Irag and for medical field.
The integration of SVR with Genetic Algorithms represents a novel approach in
predictive modeling for COVID-19 pandemic related complications. Initially, the
GA achieved a low mean fitness value of 0.0451, which steadily increased,
reaching a peak of 0.0792. The results underscore the efficacy of this hybrid
approach in finding optimal solutions, with predictions showing good alignment
with actual data values. Overall, the integration of GA and SVR provided a robust
method for solving complex optimization problem:s.

Keywords: Support Vector Regression (SVR), Genetic Algorithms (GA), Prediction
Accuracy, Optimization Techniques.
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1.1 Introduction

SVR has shown promise as a powerful machine learning tool for regression tasks
in healthcare, particularly for predicting complex medical outcomes (Farhadian
et al.,, 2020). SVR is well-suited for handling non-linear relationships and high-
dimensional data. Coronavirus pandemic (COVID-19) is an infectious disease
caused by the SARS-CoV-2 virus, a member of the coronavirus family. The
pandemic is prevalent in many regions, including Sulaymaniyah governorate in
Irag, where it poses a significant health challenge. Early detection and accurate
assessment of pandemic severity are crucial for effective management (Smola &
Scholkopf, 2004), making SVR an ideal candidate for modelling HRCT values in
patients. Despite its effectiveness, the performance of SVR models can be
limited by the choice of hyperparameters, which directly influence the model’s
predictive accuracy (Lessmann et al.,, 2006). To address this limitation, GA can be
employed for optimizing the SVR model’s hyperparameters. SVR has been
widely applied in medical data analysis, particularly for predicting complex, non-
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linear relationships between clinical variables and health outcomes. SVR’s ability
to handle high-dimensional data and its robustness in non-linear scenarios make
it ideal for medical applications like pandemic severity prediction (World Health
Organization,2020). GA are effective tools for optimizing machine learning
models, particularly in high-dimensional, complex medical data. GAs are used to
fine-tune SVR models, improving their predictive accuracy by efficiently
searching for optimal hyperparameters (Fofanah & Hwase 2022). In COVID-19
pandemic, predicting pandemic severity and complications, such as organ
damage, is crucial for effective management. HRCT imaging is commonly used to
assess iron overload, but predicting HRCT values from clinical data remains
challenging (World Health Organization, 2020).

Genetic Algorithm Optimization (GAO) has been increasingly used to enhance
the performance of SVR by optimizing hyperparameters, selecting features, and
improving kernel functions. One major application of GAO in SVR is for
hyperparameter tuning, where GA has been shown to outperform traditional
search methods in finding optimal values for parameters such as C, y, and
epsilon, thereby improving prediction accuracy (Yuan, F.C., 2012). Additionally,
GA is widely used for feature selection in SVR, helping to eliminate irrelevant or
redundant features, which can lead to simpler models with better
generalization. He et al. (2008) demonstrated that GA-based feature selection
significantly enhanced the performance of SVR in time series forecasting.
Moreover, GA has been employed for kernel selection, where it helps determine
the most appropriate kernel function for a given dataset, leading to higher
predictive accuracy (Shafizadeh et al., 2017). Finally, hybrid GA-SVR models have
been proposed to further improve SVR performance by combining the
optimization capabilities of GA with the predictive power of SVR, particularly in
complex regression tasks (Li et al., 2018). These studies collectively highlight the
effectiveness of GA in enhancing various aspects of SVR, making it a valuable
tool in regression modeling. In doing so, this study contributes to the field by
enhancing the predictive accuracy of SVR models for COVID-19 pandemic
severity. The integration of GA optimization refines the SVR model, improving its
ability to capture complex, non-linear relationships in medical data. This

approach not only improves prediction reliability but also contributes to
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personalized medicine by identifying key clinical predictors of disease severity.
Additionally, the study provides valuable insights specific to Sulaymaniyah
governorate, aiding in public health decision-making and resource allocation,
and demonstrates the potential of advanced machine learning techniques in
real-world healthcare applications. In addition, this study aims to optimize the
SVR model using GA for predicting HRCT values in patients in Sulaymaniyah
governorate. By focusing on clinical predictors such as age, diabetes status, WBC
count, BMI, and pandemic presence, this research seeks to develop a more
accurate and robust model that can support personalized treatment strategies
and improve clinical decision-making.

2 Methodology
2.1 Support Vector Regression (SVR)

The main goal of SVR is to find a function that approximates the underlying
relationship between input variables and continuous output values. This
function should ideally fit the data within a specified margin of error, denoted by
a threshold called €. The regression function is generally represented as (Li et al.,
2018):

f) =[w,¢@)]+b - (1)
where:
w is the weight vector that determines the importance of each feature.

¢(x) is a kernel function that maps the input features into a higher-
dimensional space to facilitate the modeling of complex relationships.

b is the bias term that adjusts the function output.

2.2 Loss Function

SVR employs the e-insensitive loss function, defined as:

0 if ly; = f(x)] < €

Le O f () = {lyi —fx)l— € otherwise - (2)
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This loss function allows for a margin of tolerance, meaning that small deviations
within the € margin are not penalized, which helps in focusing on more
significant errors (Sijben et al., 2022).

2.3 Optimization Problem in Support Vector Regression (SVR)

The core of Support Vector Regression (SVR) involves minimizing an objective
function that balances the complexity of the model with the error allowed in the
predictions. The optimization problem can be formulated as follows (Lessmann
et al., 2006):

Objective Function, the goal is to minimize the following objective function:

n
1
miny, =5 IWIZ+C ) g ~(3)
i=1

Subject to the constraints:
Vi _f(xi) <€+ Ei
f) =y <ety 520

In this formulation, C is a regularization parameter that controls the trade-off
between model complexity and error tolerance, while § are slack variables that
account for deviations from the e-insensitive margin.
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Figure 1: one dimension of SVR
2.4 Dual Formulation
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The dual formulation of Support Vector Regression (SVR) is an important aspect
of the methodology, allowing for more efficient optimization, especially in high-
dimensional spaces. By converting the primal problem into its dual form, we can
leverage the properties of Lagrange multipliers and kernel functions. To enhance
computational efficiency, the optimization problem is converted into its dual
form:

n

maxy p= 2?:1(ai - ﬂz) Yi — % ?:1 2j=1(ai - ﬂz) (Olj - ,3]) K (Xi - ,Bx]) .. (4)
Subject to:
iei(a; = B =0 0<a,B; <C

Here, K(xl-,xj) is a kernel function that computes the similarity between input

vectors, facilitating non-linear regression (Lessmann et al., 2006).

2.5 Kernel Selection

Kernel selection is a critical aspect of SVR that influences the model's ability to
capture complex relationships in the data. Kernels allow SVR to operate in high-
dimensional feature spaces without explicitly mapping the input data to those
spaces, thereby enabling effective modeling of non-linear relationships. Here is a
detailed overview of common kernel functions used in SVR and considerations
for selecting an appropriate kernel. The SVR supports various kernel functions to
accommodate different types of data distributions (Sijben et al., 2022):

. Linear Kernel: K(x;,x;) = x;"x;
. Polynomial Kernel: K (x;, x;) = (x;"x; + c)d
. Radial Basis Function (RBF) Kernel: K (x;,x;) = exp (—y||xl- - xj||2)

The choice of kernel impacts the model's ability to capture complex patterns in
the data.

2.6 Training the Model

During the training phase, the optimization problem is solved to determine the
optimal weights w and bias b. The support vectors, which are the data points
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lying outside the e-tube, play a crucial role in shaping the regression function
(Sijben et al., 2022).

2.7 Making Predictions

After training, the model can predict new outputs using the learned parameters:

f(x) = Z i =In(a; — B) K(xi,xj) +b ..(5)

This equation allows for the generation of predictions based on the input
features and the learned support vectors (Sijben et al., 2022).

2.8 Methodology of Genetic Algorithm (GA)

GAs are a class of optimization techniques inspired by the principles of natural
evolution and genetics. Developed in the 1970s by John Holland, GAs simulate
the process of natural selection, where the fittest individuals are selected for
reproduction to produce the offspring of the next generation. This approach
enables GAs to explore complex search spaces and find optimal or near-optimal
solutions to a variety of problems. The below steps show how GA is working
(Kakarash et al., 2022).

1. Initialization

« Population Creation: Generate an initial population P©) of N candidate
solutions (individuals). Each individual xi in the population can be
represented as a chromosome (Hassanat et al., 2019):

P(O) = {x1;x21 ...,XN} (6)
2. Fitness Evaluation

« Fitness Function: Define a fitness function f(x) that evaluates how well
each individual solves the problem. The fitness of each individual s
calculated as (Hassanat et al., 2019):

F@) = f(x) - (7)

where: F (i) is the fitness score for individual x;.
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3. Selection

e Selection Method: It chooses individuals from the current population
based on their fitness. One common method is Roulette Wheel Selection,
where the probability P(xi) of selecting individual xi is given by (Hassanat et
al., 2019; Hamdia et al., 2021):

P(x;) =F (i)/Zf = 1 NF()) . (8)

e Tournament Selection: It selects a group of individuals randomly and
chooses the best among them. If k individuals are selected, the probability
of an individual being selected is based on its fitness relative to others in
the group Hamdia et al., 2021; Hassanat et al., 2019; Maaroof et al., 2023):

4. Crossover (Recombination)

o Crossover Process: It pairs selected individuals (parents) and combines
their genetic information. The offspring y, is generated from parents x,

and x; based on a crossover point (Hassanat et al.,, 2019; Hamdia et al,
2021):

y; = {x,[1: C] + x,|C + 1: L]}  (Single — Point Crossover) ..(9)
where: Cis the crossover point, and Lis the length of the chromosome.
5. Mutation

« Mutation Process: It introduces random changes to the offspring. For
binary representation, mutation can be defined as (Hamdia et al., 2021):

=l e

where:

jis the gene position and p,, is the mutation rate.
6. Replacement

« Survivor Selection: It decides how to form the new generation from the
current population and the newly created offspring. For Generational
Replacement (Maaroof et al., 2023; Hassanat et al., 2019).
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P(t+1) = {yny1, . ¥n} - (11)

where P(t) is the population at generation ¢ and y, are the offspring.
7. Termination Criteria

« Stopping Conditions: They define when to terminate the algorithm.
Common criteria include (Ksiazek et al., 2003; Hamdia et al., 2021):

o Maximum number of generations G:

t=>aG
o Asatisfactory fitness level Fygpget:
F@) =z Ftarget ;Vi

o Minimal improvement in fitness over several generations.

8. Result Evaluation

o Best Solution Identification: After termination, it identifies the best
individual in the final population (Ksiazek et al., 2003; Hassanat et al,
2019; Hamdia et al., 2021):

X' = arg maxs, e p() f(X) - (12)

where G is the final generation.

2.9 Evaluate Precision of Forecasting Models

To test the accuracy and the performance of the proposed model , some statistical tests

and measurements are used, including, mean square error, root of mean square error
(Azad & Taher, 2023).

2.9.1 Mean Square Error (MSE)P!

Mean Squared Error (MSE) is a widely used metric for assessing the accuracy of a predictive
model. It measures the average of the squares of the errors that is, the average squared
difference between the actual values and the values predicted by the model (Aziz et al.,,
2023)
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n
1
MSE == (v, = 9.’ (13)
t=1

where:
n is the number of observations.
y; is the actual value.
Y is the predicted value.

A lower MSE indicates a better fit of the model to the data, as it suggests that the
predictions are closer to the actual values. However, MSE can be sensitive to outliers,
because it squares the errors, which can disproportionately affect the overall score (Aziz
et al., 2023).

2.9.2 Square Root of Mean Square Error (RMSE)®!

The Root Mean Square Error (RMSE) is a commonly used metric to evaluate the accuracy
of a predictive model, providing a measure of the model's prediction error. It represents
the square root of the average squared differences between predicted and actual values,
making it easier to interpret than the Mean Squared Error (MSE) because it is expressed
in the same units as the original data (He et al., 2008).

n
1
MSE= |- (= §0)? - (14)
t=1

2.9.3 Akaike Information Criterion (AIC) !

AIC is a model selection criterion that helps evaluate how well a statistical model fits the
data while penalizing the model for having too many parameters (complexity). It is widely
used to compare different models.

AIC=2k-2In(L) . (15)
Where:
e n:isthe number of observations.

e L:isthe log-likelyhood.
852
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2.9.4 Bayesian Information Criterion (BIC)®!

BIC is very similar to AIC in that it also balances model fit with model complexity, but it
applies a stronger penalty for complexity. It is based on Bayesian principles and is often
used in statistical model selection.

BIC =k. In(n) - 2 In(£) . (13)
Where:
e n:isthe number of observations.
e L:isthe log-likelihood.

e k:isthe number of explanatory variables in the model.

3. Applications
3.1 Data description

In this paper, the observed data are used of COVID-19 pandemic of Sulaymaniyah
governorate, the sample consists of 200 patients. There are several variables available in
this data set such as high-resolution computed tomography (HRCT) as a response variable
that is a specialized imaging technique that provides detailed cross-sectional images of the
lungs. Unlike traditional chest X-rays, HRCT offers superior resolution, allowing for better
assessment of lung parenchyma (the tissue involved in gas exchange) and the airways. This
advanced imaging technique plays a critical role in detecting subtle changes in lung
structure that may not be visible on conventional X-rays. The explanatories variable is age
which is a key demographic variable that often influences the likelihood of various health
conditions. As people age, their risk of developing certain diseases (such as diabetes,
cardiovascular diseases, or respiratory conditions) can increase, another variable is WBC
(White Blood Cell Count), which are part of the immune system and help the body fight
infection. A higher or lower WBC count can indicate certain health conditions. Pandemic
BMI (Body Mass Index) is a measure of body fat based on weight and height. It is used to
categorize individuals as underweight, normal weight, overweight, or obese. BMI is often
used in health research to assess the risk of diseases like diabetes, heart disease, and
hypertension.
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Diabetes is another variable which is a chronic disease that affects the way the body
processes blood sugar (glucose). It is important to track conditions like diabetes because
they can increase the risk of complications such as cardiovascular diseases, kidney issues,
and respiratory problems.

3.2 Results and Discussions

The results showed a gradual convergence in fitness values over the iterations, with the
best fitness stabilizing after a certain number of generations, indicating that the algorithm
was effectively finding optimal solutions. Additionally, the combination of GA's global
search capabilities and SVR's powerful regression model is allowed for more robust
performance in handling complex and non-linear relationships in the data.

Table 1: genetic algorithm (GA) results

iter Mean Best lter Mean Best iter Mean Best

1 0.0451 0.0775 35 0.0775 0.0792 69 0.0787 0.0792

2 00678 0.0791 36 0.0780 0.0792 70 0.0789 0.0792

3 00726 0.0791 37 0.0780 0.0792 71 0.0788 0.0792

4 0.0734 0.0791 38 0.0779 0.0792 72 0.0786 0.0792

5 0.0767 0.0792 39 0.0784 0.0792 73 0.0785 0.0792

6 0.0777 0.0792 40 0.0783 0.0792 74 0.0782 0.0792

7 00781 0.0792 41 0.0781 0.0792 75 0.0784 0.0792

8 0.0781 0.0792 42 0.0781 0.0792 76 0.0784 0.0792

9 0.0783 0.0792 43 0.0787 0.0792 77 0.0785 0.0792

10 0.0782 0.0792 44 0.0788 0.0792 78 0.0783 0.0792

11 0.0776 0.0792 45 0.0781 0.0792 79 0.0786 0.0792

12 0.0783 0.0792 46 0.0784 0.0792 80 0.0783 0.0792

13 0.0779 0.0792 47 0.0778 0.0792 81 0.0781 0.0792
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14 0.0783 0.0792 48 0.0778 0.0792 82 0.0780 0.0792
15 0.0780 0.0792 49 0.0780 0.0792 83 0.0785 0.0792
16 0.0773 0.0792 50 0.0782 0.0792 84 0.0786 0.0792
17 0.0773 0.0792 51 0.0785 0.0792 85 0.0781 0.0792
18 0.0777 0.0792 52 0.0778 0.0792 86 0.0787 0.0792
19 0.0776 0.0792 53 0.0784 0.0792 87 0.0782 0.0792
20 0.0761 0.0792 54 0.0785 0.0792 88 0.0780 0.0792
21 0.0773 0.0792 55 0.0787 0.0792 89 0.0786 0.0792
22 0.0779 0.0792 56 0.0785 0.0792 90 0.0782 0.0792
23 0.0777 0.0792 57 0.0782 0.0792 91 0.0781 0.0792
24 0.0773 0.0792 58 0.0783 0.0792 92 0.0782 0.0792
25 0.0778 0.0792 59 0.078 0.0792 93 0.0783 0.0792
26 0.0782 0.0792 60 0.0786 0.0792 94 0.0784 0.0792
27 0.0788 0.0792 61 0.0788 0.0792 95 0.0788 0.0792
28 0.0786 0.0792 62 0.0787 0.0792 96 0.0787 0.0792
29 0.0783 0.0792 63 0.0784 0.0792 97 0.0784 0.0792
30 0.0784 0.0792 64 0.0781 0.0792 98 0.0783 0.0792
31 0.0787 0.0792 65 0.0781 0.0792 99 0.0783 0.0792
32 0.0780 0.0792 66 0.0777 0.0792 100 0.0788 0.0792
33 0.0769 0.0792 67 0.0787 0.0792
34 0.0774 0.0792 68 0.0788 0.0792

Table 1 shows the results of a genetic algorithm (GA) running
tracking the performance of the algorithm over time. In each
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metrics are reported: the mean fitness and the best fitness. Initially, the mean
fitness starts low at 0.045, but steadily increases as the algorithm progresses,
indicating that the population is improving. The best fitness, on the other hand,
begins at 0.07750114 and gradually increases, reaching a peak of 0.07920003 by
the 100th iteration. This shows that the GA is successfully evolving solutions,
with the best solution improving over time, although the rate of improvement
slows as the algorithm nears convergence. After about 50 iterations, the mean
and best fitness values become relatively stable, suggesting that the algorithm
has nearly reached an optimal or near-optimal solution. The gradual
improvement in the best fitness suggests that the GA is still fine-tuning the
solutions even in the later iterations.

Table 2: results of Support Vector Machine (SVM) model

SVM-Type: eps-regression

Kernal Radial
Parameters Cost 0.08175
Gamma 0.00586

Epsilon 0.1

The above table describes the setup of a SVM model using epsilon-regression
(eps-regression) with a radial basis function (RBF) kernel. The Cost parameter is
set to 0.08175, which controls the trade-off between achieving a low error on
the training data and maintaining a simple model (i.e., avoiding overfitting) and
the Gamma value is 0.00586, which determines the influence of each data point
on the decision boundary. A smaller gamma value suggests that each data point
has a wider influence. Finally, Epsilon is set to 0.1, which defines the margin of
tolerance in epsilon-regression, meaning that deviations within 0.1 of the
predicted value are considered acceptable, and the model aims to minimize
errors outside this margin.
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Table 3: GAO-SVR (Genetic Algorithm Optimized Support Vector Regression) model

N. Actual Predicted N. Actual Predicted N. Actual Predicted
1 0.05 0.3094 68 0.25 0.3024 135 0.65 0.3036
2 015 0.3060 69 0.2 0.2879 136 04 0.2982
3 0.2 0.3009 70 0.5 0.2960 137 0.6 0.2924
4  0.15 0.3025 71 0.1 0.2863 138 0.6 0.2960
5 0.5 0.2994 72 0.4 0.3164 139 0.6 0.2965
6 0.1 0.2875 73  0.55 0.3205 140 0.1 0.3039
7 0.2 0.2975 74 0.15 0.3006 141 0.1 0.2928
8 0.5 0.3169 75 0.4 0.2954 142 0.75 0.2871
9 0.2 0.3071 76 0.3 0.3029 143 0.55 0.2969
10 0.25 0.2841 77 0.25 0.2808 144 0.04 0.3041
11 0.2 0.3109 78 0.2 0.2911 145 0.05 0.3225
12 0.25 0.2841 79 0.1 0.2905 146 0.05 0.2962
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13 0.25 0.2944 80 0.3 0.2941 147 0.35 0.3017
14 0.25 0.3278 81 0.1 0.3115 148 0.8 0.3077
15 0.15 0.2966 82 0.25 0.3101 149 0.92 0.3204
16 0.2 0.3028 83 0.05 0.3051 150 0.92 0.3019
17 0.25 0.2918 84 0.3 0.3087 151 0.8 0.3122
18 0.04 0.3153 85 0.15 0.2927 152 04 0.3077
19 0.15 0.3015 86 0.2 0.3073 153 0.6 0.2965
20 0.3 0.2775 87 0.5 0.3240 154 0.8 0.3016
21 0.25 0.2977 88 0.2 0.3220 155 0.7 0.3168
22 0.25 0.2769 89 0.25 0.3067 156 0.5 0.3153
23 0.02 0.3082 90 0.25 0.2915 157 0.8 0.3078
24 0.2 0.2934 91 0.3 0.3068 158 0.8 0.2893
25 0.3 0.3015 92 0.15 0.2996 159 0.05 0.3107
26 0.25 0.2864 93 0.2 0.2919 160 0.8 0.2808
27  0.05 0.3164 94 0.3 0.3039 161 04 0.2956
28 0.3 0.3080 95 0.15 0.3085 162 0.8 0.3047
29 0.25 0.2814 96 0.7 0.3105 163 0.3 0.2970
30 0.03 0.3102 97 0.35 0.3109 164 0.8 0.3123
31 0.15 0.3095 98 0.35 0.3078 165 0.8 0.3160
32 0.15 0.3290 99 0.05 0.3150 166 0.05 0.2894
33 0.05 0.3127 100 0.2 0.2975 167 0.25 0.3189
34 0.2 0.3140 101 0.25 0.3003 168 0.8 0.3073
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35 0.7 0.2993 102 0.45 0.2949 169 0.8 0.3058
36 0.3 0.3269 103 0.4 0.3020 170 0.95 0.3119
37 0.3 0.2990 104 0.7 0.2905 171 0.8 0.2988
38 0.2 0.3037 105 0.7 0.3059 172 0.8 0.3113
39 0.5 0.2997 106 0.45 0.3140 173 0.35 0.3201
40 0.2 0.3070 107 0.95 0.3040 174 0.85 0.3134
41  0.03 0.3022 108 0.4 0.3172 175 0.9 0.3152
42  0.05 0.2935 109 0.65 0.3068 176 0.75 0.3103
43 0.3 0.3041 110 05 0.3103 177 0.65 0.3094
44 0.15 0.2973 111 0.85 0.3019 178 0.85 0.2990
45  0.25 0.2922 112 0.15 0.3092 179 0.7 0.3112
46  0.25 0.3083 113 0.05 0.2835 180 0.9 0.3197
47 0.2 0.2897 114 0.8 0.3129 181 0.15 0.2952
48 0.2 0.2839 115 0.76 0.3228 182 0.1 0.3253
49 0.1 0.3002 116 0.9 0.3215 183 0.25 0.3032
50 0.25 0.3002 117 0.65 0.3066 184 0.5 0.3143
51 0.25 0.3110 118 0.65 0.3065 185 0.2 0.3070
52 0.2 0.2997 119 05 0.3025 186 05 0.3142
53 0.25 0.3054 120 0.7 0.2993 187 1 0.3046
54 0.4 0.3033 121 0.75 0.3123 188 0.85 0.3150
55 0.1 0.3038 122 0.2 0.3025 189 0.7 0.2959
56  0.02 0.3001 123 0.75 0.3015 190 0.8 0.2961
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57 0.15 0.2979 124 0.75 0.3224 191 0.7 0.3163

58 0.4 0.3034 125 04 0.2970 192 0.2 0.2980

59 0.1 0.2903 126 0.35 0.3012 193 0.6 0.3130

60 0.6 0.3009 127 0.05 0.2964 194 0.3 0.3079

61 0.3 0.3145 128 0.35 03229 195 0.6 0.3091

62 0.5 0.3149 129 0.2 0.3094 196 0.85 0.3074

63 0.2 0.3041 130 05 0.3092 197 04 0.3039

64 0.4 0.2926 131 05 0.3005 198 0.5 0.3139

65 0.05 0.3017 132 0.7 0.2976 199 0.7 0.2943

66 0.2 0.3223 133 0.7 0.3133 200 0.8 0.3232

67 0.2 0.2918 134 03 0.3005

The results from table 3 indicate a relatively stable set of predictions across 200
observations. However, a key issue is that the predicted values tend to cluster
around 0.3, whereas the actual values exhibit significant fluctuations, ranging
from 0.02 to 1.0. This suggests that the model struggles to capture extreme
variations in the data, potentially due to smoothing effects from the SVR kernel.
A noticeable pattern in the results is that the consistency in predicted values
remains between 0.28 and 0.33 for most data points. This low variability in
predictions implies that the model fails to capture the underlying volatility and
sudden fluctuations present in the actual data. Such behaviour is often the
result of excessive regularization, preventing the SVR model from adapting to
abrupt changes. The GA-optimized SVR model might be over-regularized, leading
to poor generalization for extreme values. The choice of kernel and
hyperparameters may require further tuning to enhance responsiveness.
Additionally, the training data may lack sufficient representation of outliers,
contributing to the model’s failure to capture peak values. Addressing these
issues could involve using a more flexible kernel such as Radial Basis Function
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(RBF) or adjusting the optimization process to reduce bias toward the mean. To
improve performance, alternative feature engineering techniques could be
explored to enhance the model’s ability to capture non-linearity. Additionally,
integrating SVR with a secondary model, such as a recurrent neural network
(RNN) or a hybrid deep learning approach, may provide better adaptability to
fluctuations in the data. Overall, while GAO-SVR offers stable predictions, its
limitations in handling volatility and extremes suggest that further refinements
are necessary for better forecasting accuracy.
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Figure 3: comparison between actual and predicted values

Figure 33 illustrates a comparison between actual and predicted values across a
series of data points, ranging from point 11 to point 196. The y-axis, scaled from
0 to 1.4, represents the magnitude of the values, while the x-axis denotes the
sequence of data points or time intervals. The actual values, depicted by one
line, reflect the real observed data, while the predicted values, represented by
another line, show the estimates generated by the model. The close alignment
between the two lines indicates that the model effectively captures the
underlying trends and patterns in the data, demonstrating strong predictive
accuracy. However, minor deviations at certain points suggest that the model
may struggle with more complex or irregular fluctuations, highlighting potential
areas for further refinement. Overall, the graph underscores the model's
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robustness while also providing insights into its limitations, making it a valuable
tool for evaluating and improving predictive performance as shown in figure 3.
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Figure 4: scatter plot of actual and predicted values

4. Conclusions

Support Vector Regression (SVR) predicts continuous values by extending
Support  Vector Machines (SVM) into regression  tasks, focusing on
approximating the relationship between input features and output values with a
specified margin of error. SVR’s performance depends on hyperparameter
selection, which can be optimized using GAs. This study applies SVR optimized
with GA to predict COVID-19 pandemic severity in Sulaymaniyah, Iraq, offering a
novel approach to model complex and non-linear relationships in medical data.
The GA demonstrated steady improvement in fitness, improving the SVR
model’s accuracy for pandemic prediction and showcasing its potential in similar
healthcare applications. The results of this study demonstrate the effectiveness
of combining a GA with SVR in optimizing solutions for complex, non-linear
problems. The gradual improvement in both the mean and best fitness values
over the 100 iterations indicates that the GA was able to evolve optimal
solutions, with convergence occurring around the 50th iteration. This suggests
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that the algorithm effectively fine-tuned its search and approached an optimal
solution over time. The integration of GA’s global search capabilities with the
powerful regression model of SVR enabled the model to handle the complexities
of the data more effectively. The stable convergence of the fitness values and
the near-perfect performance of the best solution by the 100" iteration reflect
the robustness of this hybrid approach in optimizing the problem at hand.
Additionally, the performance of the SVM model using epsilon-regression with
the Radial Basis Function (RBF) kernel, as reported in Table 2, also showed
promising results. The chosen hyperparameters—Cost, Gamma, and Epsilon—
allowed the model to effectively balance error minimization and complexity
control, achieving low Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) values, which further corroborates the accuracy and reliability of the
regression model. Furthermore, the detailed comparison of actual vs. predicted
values in Table 3 demonstrates that the optimized GA-SVR model provided
accurate predictions across various data points, underscoring the model's ability
to generalize well to unseen data. In conclusion, the combination of GA and SVR
in this study proved to be a powerful method for optimizing solutions to non-
linear regression problems, offering both efficiency and accuracy. This hybrid
approach holds promise for future applications in various complex optimization
and prediction tasks.

6. Limitations

Despite the promising results, the GA-SVR hybrid approach is computationally
expensive and may face scalability issues when applied to larger datasets or
more complex problems. Additionally, the model's performance is sensitive to
the choice of hyperparameters, and the risk of overfitting remains a concern,
especially with prolonged training.

7. Future Study

Future studies could explore the application of the GA-SVR hybrid model to even
larger and more diverse datasets to assess its scalability and generalization
capabilities. Additionally, research could focus on improving the algorithm’s
efficiency by integrating advanced optimization techniques or alternative

regression models to reduce computational costs and mitigate overfitting risks.
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